
Towards the Implementation of a Refined Data Model for a Zulu
Machine-Readable Lexicon

Ronell van der Merwe, Laurette Pretorius, Sonja Bosch
University of South Africa

PO Box 392, UNISA 0003, South Africa

vdmerwer@unisa.ac.za, pretol@unisa.ac.za, boschse@unisa.ac.za

Abstract

The development of a machine-readable lexicon for Zulu requires a comprehensive data model for representing lexical information.
This article focuses on the modelling of the verb structure in Zulu, and more specifically verbal extensions and deverbatives due to
their complex recursive morphological structure. Moreover, we also show how the machine-readable lexicon, based on the proposed
data model, may be embedded in an update framework. This framework also includes a finite-state morphological analyser, its guesser
variant and electronically available Zulu corpora as a potential source of new lexical information. Finally implementation issues are
considered in order to ensure accurate modelling and efficiency in the lexical repository.

1. Introduction

Comprehensive machine-readable (MR) lexicons remain

one of the most basic language resources in human

language technologies and natural language processing

applications. The quest for comprehensiveness entails

among others, the inclusion of all the lexical information

and structure contained in paper dictionaries, and the

sourcing of lexical information from electronically

available Zulu corpora via an update framework. In

particular, we aim at clarifying the role of the MR lexicon

as a component in the update framework, as well as its

relation with the other components, viz. the finite-state

morphological analyser (ZulMorph), its guesser variant

and electronically available corpora (cf. Pretorius and

Bosch, 2003, Bosch et al., 2008). For lesser-resourced

languages the development of such a resource is

challenging and time consuming, and requires the optimal

use of available corpora, enabling technologies and

implementation approaches.

Firstly, we briefly discuss the components and processes

that constitute the update framework for building and

maintaining a comprehensive MR repository of lexical

information for Zulu.

Secondly, we refine a comprehensive data model for such

a resource, first proposed by Bosch et al. (2007:142),

where it was argued that “well-defined recursion is the

correct and intuitive way to capture certain linguistic

information such as verbal extensions …” The

importance of allowing recursion within entries in MR

lexicons for the South African Bantu languages, in order

to facilitate accurate modelling, is supported by Weber

(2002:8). He states that “lexical databases should

accommodate (1) derived forms having multiple senses

and (2) derived forms ... of the bases from which they are

derived”. In the original data model, verbal extensions

were treated as the main source of recursion. In this paper,

the data model is extended by including deverbatives, the

modelling of which is also based on recursion.

Finally, we consider the suitability of various

implementation approaches with specific focus on the

recursive nature of the data model.

2. Update Framework

The framework for developing and updating the

comprehensive MR lexicon for Zulu is shown in Figure 1.

Apart from the MR lexicon, the framework includes a

finite-state morphological analyser, its guesser variant,

new language data in the form of electronic corpora and

linguistic expertise for moderating additions derived from

the Guesser.

Figure 1: The Lexicon update framework

The main purpose of a comprehensive MR lexicon is to

serve as a machine-readable repository of all lexical

information. This resource may then be used and reused in

various applications. One of its intended applications is to

support the development and maintenance of a finite-state

morphological analyser, e.g. ZulMorph. The

morphological analyser represents only morphosyntactic

information in the form of Zulu morphotactics,

morphophonological alternation rules and an embedded

stem/root lexicon, as automatically extracted from the

MR lexicon. The guesser variant of the morphological

analyser is designed to identify all phonologically

possible stems/roots. This newly found candidate

stems/roots are considered for linguistic validity and for

inclusion in the MR lexicon.

Proceedings of the Second Workshop on African Language Technology
- AfLaT 2010 -

49

3. Data model

The development of a comprehensive MR lexicon relies

on an underlying data model for the Bantu languages that

provides for storage of and access to all the units of

information, both rule-based (regular) and idiosyncratic,

associated with the attested words in a language. The

lexicon is conceptualised as consisting of a collection of

entries at the highest level. Each entry then has a tree-like

structure for accommodating the relevant lexical

information. The top four levels of this tree are shown in

Figure 2. Each entry consists of a head (the stem) and a

body, which represents general information about the

stem such as its phonetic transcription, tone,

morphosyntactic information (including part of speech),

sense, dialect information, etymology, etc. (cf. Bosch et

al., 2007) for a detailed discussion).

Figure 2: Top levels of the data model.

Figures 3a and 3b provide details of the modelling of the

verb, exhibiting two sources of recurrence, viz. verbal

extensions and nominal suffixes of deverbatives (more

details in 3.1 and 3.2), which results in the generation of

complex data such as nested derivational forms and their

sense information. These (recursive) characteristics

present specific challenges in developing a MR lexicon

for the Zulu language. The Kleene * indicates 0 or more

occurrences, the Kleene + indicates 1 or more occurrences,

| optionality, and √ a leaf node.

Figure 3a: Verb structure fragment of the data model

Figure 3b: Deverbative features fragment

The relevant fragment of the data model in the form of a

DTD is as follows:

<!ELEMENT Entry (Head,Body)>

<!ELEMENT Head (Stem)>

<!ELEMENT Body (PhonTransc*, Tone*, MSI,

Sense+, Dialects*, Etymology?)>

...

<!ELEMENT MSI (POS)>

<!ELEMENT POS (Verb | Noun | Adverb |

Adjective | Ideophone | Enumerative | Pronoun

| AuxVerb)>

...

<!ELEMENT Verb (Root,VerbFeatures)>

<!ELEMENT VerbFeatures (Label, Transitivity,

Sense,(DeverbSuffix,DeverbFeatures+)*,Ext*

)>

<!ELEMENT Ext ((Appl | Caus | Intens | Neut

| Pass | Recip), Transitivity,Sense,

(DeverbSuffix,DeverbFeatures+)*,Ext*)>

...

<!ELEMENT DeverbFeatures (ClassPrefSg?,

ClassPrefPl?, ClassNo, Label,

NominalSuffix*)>

<!ELEMENT NominalSuffix ((Aug | Fem | Dim |

Loc),Form, Sense, NominalSuffix*)>

...

We discuss and exemplify the modelling of two sources of

recurrence, viz. verbal extensions and deverbatives.

3.1 Verbal extensions

In Zulu morphology, the basic meaning of a verb root may

be modified by suffixing so-called extensions to the verb

root. Examples of such extensions are the causative,

reciprocal, passive, applied and neuter. We use the verb

root -bon- ‘see’ to illustrate the sequencing of these

suffixes as well as the associated modification of the basic

meaning of the verb root.

(1) -bon-is- ‘show, cause to see’

-verb.root-caus

(2) -bon-an- ‘see each other’

-verb.root-recip

(3) -bon-w- ‘be seen’

-verb.root-pass

(4) -bon-el- ‘see for’

50

-verb.root-appl

(5) -bon-akal- ‘be visible’

-verb.root-neut

(6) -bon-is-an- ‘show each other’

-verb.root-caus-recip

Verbal extension suffixes modify the basic meaning of the

verb root as illustrated in (1) to (6). In certain instances, as

illustrated in (6), more than one extension may even be

suffixed to the verb root. This structure is modelled in

Figure 3 in the Ext substructure where recursion is

denoted by the arc.

The sequencing of extensions is largely idiosyncratic and

attested sequences need to be obtained from corpora and

then stored in the MR lexicon. For instance, in a sequence

of two or more extensions, the passive is usually last in

the sequence. However, in the case of certain verb roots,

the reciprocal extension follows the passive, while both

sequences are possible in other cases, for example:

(7) -bon-an-w- ‘seen by each other’

-verb.root-recip-pass

(8) -bon-w-an- ‘seen by each other’

-verb.root-pass-recip

There are also instances where the applied extension

follows the passive (cf. Van Eeden, 1956: 657):

(9) ya-bulal-w-el-a > yabulawela ‘he was killed for’

subj.conc-verb.root-pass-appl-suffix

Similarly, Doke and Vilakazi (1964) list examples (10)

and (11) which exemplify the causative and applied

extensions in converse sequences, each expressing a

slightly different meaning:

(10) -bon-is-el- ‘look after for’

-verb.root-caus-appl

(11) -bon-el-is- ‘cause to take care of’

-verb.root-appl-caus-

Existing paper dictionaries of Zulu do not contain

exhaustive information on the combinations and

sequences of extensions with verb roots. This type of

information could, however, be extracted

semi-automatically from language corpus resources.

Further examples of verbal extension sequences and how

the meaning of the basic root is changed, are given in (12)

to (16). This is modelled in Figure 3 by the Sense

substructure associated with each Ext.

 (12) -bon-akal- “be visible”

-verb.root-neut

(13) -bon-akal-is- “make visible”

-verb.root-neut-caus

(14) -bon-el-an- “see for/perceive for/take care of each

other”

-verb.root-appl

 (15) -bon-el-el- “treat with consideration”

-verb.root-appl-appl

(16) -bon-el-el-w- “be treated with consideration”

-verb.root-appl-appl-pass

For a detailed exposition of Zulu grammar and linguistic

terminology, cf. Poulos and Msimang (1998).

3.2 Deverbatives

Deverbatives are formed when a verb (or extended verb)

root is suffixed with a deverbative suffix (o-, i-, a-, e- and

u-)
1
 and takes a noun class prefix before the verb root.

Such derivational affixes cannot combine randomly with

any verb root, since they are restricted by semantic

considerations.

The data model provides for the capturing of class

information, the deverbative suffix, the sequence

(recursion) of nominal suffixes, and associated semantic

information. This structure is modelled in Figure 3 in the

Nominal Suffix substructure where recursion is again

denoted by the arc. The example in (21) represents the

extended root -bon-is-el-o with two verbal extensions -is-

and -el- as well as a nominal suffix -ana.

Deverbative nouns cannot arbitrarily be formed from any

verb root (Van Eeden, 1956:712). At present the

resolution of this issue, that is the valid combinations of

noun prefixes and (extended) verb roots in the formation

of deverbative nouns, is mainly determined from entries

in existing dictionaries (attested forms) and occurrences

of such combinations in corpora (as yet unlisted forms).

The following are examples, based on the root -bon-

“see”:

(17) isi-bon-i “mourner (lit. one who looks on at a

funeral)”

Class.pref.cl 6/7-verb.root-deverb.suffix

(18) um-bon-i “one who sees”

Class.pref.cl 1/2-verb.root-deverb.suffix

(19) um-bon-o “apparition, vision”

Class.pref.cl 3/4-verb.root-deverb.suffix

(20) isi-bon-is-o “signpost, signal”

Class.pref.cl 6/7-verb.root-caus-deverb.suffix

(21) isi-bon-is-el-o-ana “small example”

Class.pref.cl 6/7-verb.root-caus-appl-deverb.suffix-dim

4. Towards implementation

The capturing of data in a rigorous, systematic and

appropriately structured way is of utmost importance to

ensure that data exchange, in this case between the

machine-readable lexical database (MR lexicon) as the

source and other applications (for example the

morphological analyser), is consistent.

Important considerations in the choice of database

implementation include the type of data that has to be

stored, the different views of and access to the data that

may be required by applications, and the amount of data

that needs to be stored.

Type: Lexical data is semi-structured (Manning and

Parton, 2001) and a chosen database environment for the

1
 o- and i- are used productively for the formation of impersonal

and personal deverbatives respectively, while a-, e- and u-

seldom occur and are non-productive.

51

capturing of lexical information should allow for

recursion. In particular, it should allow for multiple

occurrences (recursion) of certain substructures such as

Ext and NominalSuffix, resulting in n-depth

structures that are reused throughout the representation of

such information.

Views and access: For the purposes of rebuilding the

morphological analyser (see Figure 1) the preferred view

would be the morphological structure of all the word roots

in the database while access would be sequential. It

should be clear that for other applications different views

may be required and access may even be random.

Amount of data: It is estimated that the Zulu MR lexicon

should make provision for between 40 000 and 50 000

entries, each of which would have its own specific

associated lexical information (see Figure 2).

XML and Unicode are de facto standards for mark-up and

encoding. Therefore, only Native XML and

XML-enabled databases are considered.

An XML-enabled database is a database with extensions

for transferring data between XML documents and its

own data structures. XML-enabled databases that are

tuned for data storage, such as a relational or

object-oriented database, are normally used for highly

structured data.

A native XML database is one that treats XML documents

and elements as the fundamental structures rather than

tables, records, and fields (Harold, 2005). Native XML is

more suitable for unstructured data or data with irregular

structure and mixed content.

Since lexical data are semi-structured there are two

choices: Either endeavour to fit the data into a

well-structured database, or store it in a native XML

database, designed to handle semi-structured data

(Bourret, 2010). In subsequent sections the various

options are briefly discussed.

4.1 Native XML databases

Native XML databases (NXD) allow for user-defined

schemas. For Zulu such a schema will be based on the

proposed data model (given in DTD notation) (Bosch et

al., 2007) and its extension (Section 3). This approach to

lexical database development was, for instance, also

successfully used for Warlpiri, an Indigenous Australian

language (Manning and Parton, 2001). Query languages

such as XQuery (a W3C standard) and XUpdate,

particularly suitable for database-oriented XML, may

then be used to query and update the database.

A fragment of the XML code for example (21), according

to the DTD in section 3, is as follows:

<Verb>

 <Root>bon</Root>

 <VerbFeatures>

 <Label>v</Label>

 <Transitivity>t</Transitivity>

 <Sense>see</Sense>

 <Ext> <!-- Orth. form: bonisa -->

 <Caus>is</Caus>

 <Transitivity>t</Transitivity>

 <Sense>show; cause to see</Sense>

 <Ext> <!-- Orth.form:bonisela -->

 <Appl>el</Appl

 <Transitivity>t</Transitivity>

 <Sense>look after for

 </Sense>

 <DeverbSuffix>o</DeverbSuffix>

 <DeverbFeatures>

 <ClassPrefSg>

 isi

 </ClassPrefSg>

 <ClassPrefPl>

 izi

 </ClassPrefPl>

 <ClassNo>6-7</ClassNo>

 <Label>n:dev</Label>

 <NominalSuffix>

 <Dim>

 <Form>ana</From>

 <Sense>small example</Sense>

 </Dim>

 </NominalSuffix>

 </DeverbFeatures>

 </Ext>

 <Ext>

 </VerbFeatures>

</Verb>

...

Using XQuery to return the English translation for –bon-

in example (21):

for $x in doc("verb.xml")/verb

where $x/Root="-bon-"

return $x/VerbFeatures/Sense

Result:
<?xml version="1.0" encoding="UTF-8"?>

<Sense> see </Sense>

4.2 XML-enabled databases

Alternatives to NXDs are XML-enabled databases such
as relational and object-orientated databases.

4.2.1 Relational databases

Relational databases are a de facto standard for

operational and analytical applications (Lin 2008; Naser

et al., 2007). Standard query languages (such as SQL) can

be used to query the relational database and both

commercial and open source software is available for

parsing of XML. However, representing the recursive

structure of the verbal extensions and the nominal suffixes

in a relational database is problematic since the traversal

of n-depth structures results in a large number of small

tables with “artificially” generated pointers. Arenas and

Libkin (2008) investigated the theoretical issues of data

exchange in XML documents and indicated that it is not

always a clear-cut situation to assume that a set of data in

a database shall always produce consistent data, due to the

restrictions that exist in a relational database.

52

 Figure 4: Entity-relationship diagram for

Figure 4 shows a fragment of the entity

diagram (ERD) that was created to

Ext-structure in a relational database. Each individual

representation is captured in the Index

table and then this instance is represented in the relevant

table, e.g. verb_appl or verb_neut

point_from will be used as a “pointer” that refers back

to the previous element from where the new element is

derived. The sense of each new element is captured in the

sense table. The ERD is a possible solution for

but rendering DTD compliant XML from this st

and producing consistent data may be time consuming

since each individual table needs to be converted to XML

and then merged to generate the final XML to be used for

archiving and inter-system usage.

4.2.2 Object-oriented databases

An object oriented database supports recursion in the

modelling of the verb structure and deverbatives in Zulu.

An exposition of the details and full complexity of this

approach for the implementation of the data model falls

outside the scope of this article. We show onl

idea by applying it to the verb root and its verbal

extensions as follows:

The class VRoot occupies the highest level in the class

hierarchy for extended verb roots, followed by six

subclasses, viz. VRoot+Appl,

VRoot+Intens, VRoot+Neut, VRoot+Pass

VRoot+Recip. In turn, each subclass again has its own

six subclasses, viz. VRoot+Appl+Appl

VRoot+Appl+Caus, …, and so on. This hierarchy is

dynamically expanded as new extended roots are

identified. Unlike an entity in a relational database, an

object includes not only information about the

relationships between facts within an object, but also

information about its relationship with other objects.

A particular verb root (say -bon-) and its extensions are

then individual objects (instantiations) in the appropriate

classes. Each such instantiation has its own unique

identity (OID) and inherits specific attributes and

methods from its super class/parent object, making it

quite intuitive to present the lexical data in an

object-oriented database.

In example (6) more than one extension is suffixed to the

verb root. The classes of interest in this example are

VRoot, VRoot+Caus, and VRoot+Caus+Recip

relationship diagram for Ext-structure

Figure 4 shows a fragment of the entity-relationship

diagram (ERD) that was created to represent the

in a relational database. Each individual

Index_of_words

table and then this instance is represented in the relevant

neut. The field

will be used as a “pointer” that refers back

to the previous element from where the new element is

derived. The sense of each new element is captured in the

table. The ERD is a possible solution for Ext,

but rendering DTD compliant XML from this structure

and producing consistent data may be time consuming

since each individual table needs to be converted to XML

and then merged to generate the final XML to be used for

ted database supports recursion in the

of the verb structure and deverbatives in Zulu.

An exposition of the details and full complexity of this

approach for the implementation of the data model falls

outside the scope of this article. We show only the basic

idea by applying it to the verb root and its verbal

occupies the highest level in the class

hierarchy for extended verb roots, followed by six

, VRoot+Caus,

VRoot+Pass and

. In turn, each subclass again has its own

VRoot+Appl+Appl,

, …, and so on. This hierarchy is

dynamically expanded as new extended roots are

onal database, an

object includes not only information about the

relationships between facts within an object, but also

information about its relationship with other objects.

) and its extensions are

ts (instantiations) in the appropriate

classes. Each such instantiation has its own unique

identity (OID) and inherits specific attributes and

methods from its super class/parent object, making it

quite intuitive to present the lexical data in an

In example (6) more than one extension is suffixed to the

verb root. The classes of interest in this example are

VRoot+Caus+Recip

and the instantiated objects are for

-bon-is-an-, as shown in Figure 5, where the arrow

indicates inheritance of information via the class

hierarchy. An example of inherited information is the

Etymology of the basic root, while lexical information

that is associated with each unique object is the

information. Figure 5 illustrates how such recursion is

captured in an object-oriented approach.

Naser et al. (2007) describe the “forward engineering”

process whereby the object oriented database

environment (including inheritance and nesting) is used

as input and a corresponding XML schema and

document(s) are produced as output. The “two

mapping” algorithm (Naser et al., 2009)

transform the data in the object

to flat XML, then to the nested XML schema and lastly to

the final XML document.

Figure 5: Recursion as objects

5. Conclusion and future work

In this article we described the refinement of a data model

for a Zulu MR lexicon, focusing on the modelling of two

sources of recurrence in the verb structure, viz. verbal

extensions and deverbatives. We also showed how the

MR lexicon, based on the proposed data model, may be

embedded in an update framework. Finally we proposed

Native XML and object-orientated databases as two

possible approaches to implementation. Reasons for this

may be summarized as follows:

Type of data: Object oriented databases are designed to

work well with state of the art object oriented

programming languages. Object oriented databases use

the same model as these programming languages as they

store and index theoretical objects. “Object databases are

generally recommended when there is a business need for

high performance processing on complex data” (Foster,

2010).

XML Databases offer the same functionality as Objec

oriented databases. The data is structured in a hierarchical

manner except that Native XML databases store XML

documents instead of theoretical objects. While this is

conceptually the same data storage, XML databases have

and the instantiated objects are for -bon-, -bon-is- and

Figure 5, where the arrow

indicates inheritance of information via the class

An example of inherited information is the

of the basic root, while lexical information

that is associated with each unique object is the Sense

igure 5 illustrates how such recursion is

oriented approach.

Naser et al. (2007) describe the “forward engineering”

process whereby the object oriented database

environment (including inheritance and nesting) is used

rresponding XML schema and

document(s) are produced as output. The “two-way

(Naser et al., 2009) may be used to

transform the data in the object-oriented approach, firstly

sted XML schema and lastly to

Figure 5: Recursion as objects

Conclusion and future work

In this article we described the refinement of a data model

for a Zulu MR lexicon, focusing on the modelling of two

in the verb structure, viz. verbal

extensions and deverbatives. We also showed how the

MR lexicon, based on the proposed data model, may be

embedded in an update framework. Finally we proposed

orientated databases as two

roaches to implementation. Reasons for this

may be summarized as follows:

Object oriented databases are designed to

work well with state of the art object oriented

programming languages. Object oriented databases use

rogramming languages as they

store and index theoretical objects. “Object databases are

generally recommended when there is a business need for

high performance processing on complex data” (Foster,

XML Databases offer the same functionality as Object

oriented databases. The data is structured in a hierarchical

manner except that Native XML databases store XML

documents instead of theoretical objects. While this is

conceptually the same data storage, XML databases have

53

the added benefit of being able to exchange the data in its

native format – no overheads are incurred by

transformation and mapping of the data to and from other

database structures or representation.

Views and access: Where Object Databases have Object

Query Language (OQL), XML Databases have XQuery,

which is a W3C standard. Multiple views of the data, as

well as appropriate access, are supported via these

powerful query languages.

Amount of data: Both native XML and object oriented

databases are able to process arbitrarily large documents.

Moreover, these approaches are claimed to offer high

performance since queries over a well-designed,

well-implemented native XML or XML-enabled object

oriented database are faster than queries over documents

stored in a file system – particularly in cases where

queries are significantly more frequent than insertions and

updates, which is expected to be the case for a

comprehensive, mature and stable MR lexicon.

Work planned for the near future includes

− the development of prototypes for the MR

lexicon for Zulu in order to investigate,

demonstrate, evaluate and compare the two

possible approaches to implementation;

− the development of software support for

semi-automating the lexicon update framework;

− the bootstrapping of MR lexicons for various

other Bantu languages from the Zulu lexicon.

6. Acknowledgements

This material is based upon work supported by the

National Research Foundation under grant number

2053403. Any opinion, findings and conclusions or

recommendations expressed in this material are those of

the authors and do not necessarily reflect the views of the

National Research Foundation.

7. References

Arenas, M., Libkin, L. (2008). XML data exchange:
consistency and query answering, Journal of the ACM,
55(2). [Online]. Available:
http://portal.acm.org/citation.cfm?id=1346332
(accessed February 2010).

Bosch, S.E., Pretorius, L. & Jones, J. (2007). Towards
machine-readable lexicons for South African Bantu
languages. Nordic Journal of African Studies 16(2),
pp.131–145.

Bosch, S., Pretorius, L. & Fleisch, A. (2008).
Experimental Bootstrapping of Morphological
Analysers for Nguni Languages. Nordic Journal of
African Studies 17(2), pp. 66–88.

Bourret, R. (2009). XML Database Products:
XML-Enabled Databases. [Online]. Available:

http://www.rpbourret.com/xml/ProdsXMLEnabled.ht
m (accessed March 2010).

Doke, C.M. & Vilakazi, B. (1964). Zulu-English
Dictionary. Johannesburg: Witwatersrand University
Press.

Foster, C. (2010). XML databases – The business case.
CFoster.net. [Online]. Available:
http://www.cfoster.net/articles/xmldb-business-case/

 (accessed March 2010).
Harold, E.R. (2005). Managing XML data: Native XML

databases - Theory and reality. IBM developerWorks.
[Online]. Available:
http://www.ibm.com/developerworks/xml/library/x-m
xd4.html (accessed March 2010).

Lin, C.Y. (2008). Migrating to relational systems:
Problems, methods, and strategies. Contemporary
Management Research, 4(4), pp.369–380.

Manning, C. & Parton, K. (2001). What's needed for
lexical databases? Experiences with Kirrkirr.
Proceedings of the IRCS Workshop on Linguistic
Databases, pp. 167-173. University of Pennsylvania,
Philadelphia.

Naser, T., Alhajj, R. & Ridley, M.J. (2009). Two-way
mapping between object-oriented databases and XML.
Special Issue: Information Reuse and Integration. R.
Alhajj (Ed.), 33, pp.297–308.

Naser, T., Kianmehr, K., Alhajjb, R. & Ridley, M.J.
(2007). Transforming object-oriented databases into
XML. Proceedings of the IEEE International
Conference on Information Reuse and Integration, IRI
2007. pp.600–605.

Poulos, G. & Msimang, C.T. (1998). A Linguistic
Analysis of Zulu. Pretoria: Via Afrika.

Pretorius, L. & Bosch, SE. (2003). Finite-state
computational morphology: An analyzer prototype for
Zulu. Machine Translation – Special issue on
finite-state language resources and language
processing, 18, pp.195–216.

Van Eeden, B.I.C. (1956). Zoeloe-Grammatika.
Stellenbosch: Universiteits-uitgewers.

Weber, D.J. (2002). Reflections on the Huallaga Quechua
dictionary: derived forms as subentries. [Online].
Available:
http://emeld.org/workshop/2002/presentations/weber/e
meld.pdf (accessed February 2010).

54

	van der Merwe et al. - Towards the Implementation of a Refined Data Model for a Zulu Machine-Readable Lexicon

