
Developing an Open source Spell-checker for Gı̃kũyũ

Kamau Chege1, Peter Wagacha1, Guy De Pauw1,2, Lawrence Muchemi1
Wanjiku Ng’ang’a1, Kenneth Ngure3, Jayne Mutiga3

1School of Computing and Informatics 2CLiPS - CLG 3Department of Linguistics
University of Nairobi University of Antwerp University of Nairobi

Kenya Belgium Kenya
kamauchege@gmail.com guy.depauw@ua.ac.be kamurink@yahoo.com

{waiganjo,lmuchemi,wanjiku.nganga}@uonbi.ac.ke jaynemutiga@yahoo.co.uk

Abstract
In this paper, we describe the development of an open source spell checker for Gı̃kũyũ, using the Hunspell language tools. We explore
the morphology of Gı̃kũyũ and highlight the inflection of various parts of speech, including verbs, nouns, and adjectives. In Hunspell,
surface words are realized as a set of continuation classes, with each class providing a morpheme with a specific function. In addition,
circumfixation, which is prevalent in Gı̃kũyũ, is implemented. Hunspell also provides for word suggestion, using character prevalence
and replacement rules. Given that the developed Gı̃kũyũ spellchecker and the Hunspell tools are open source, the spell checking function
developed in this work can be adopted in major open-source products such as Mozilla and OpenOffice products. The spell checker has a
fairly representative Gı̃kũyũ lexicon and achieves an acceptable realization of a Gı̃kũyũ spellchecker. When tested on a test corpus, the
spell checker attains a precision of 82%, recall of 84% and an accuracy of 75%.

1. Introduction

A grammatically and orthographically correct text is nec-
essary in ensuring high quality textual documents for effec-
tive communication. There is therefore a need to avail tools
and utilities to support electronic document preparation. A
spell checker is a design feature or a program that verifies
the spelling of words in a document, query, and browsers,
among other contexts. The goals of developing human lan-
guage technology applications can only be achieved if lo-
calization, and basic language tools or utilities like spell
checkers are made publicly available for a language. This
paper describes such an effort for the Kenyan language of
Gı̃kũyũ.

Gı̃kũyũ can be classified as a resource scarce language with
respect to language technology resources, tools and appli-
cations. This situation can be attributed to different factors.
First, Kiswahili and English are the dominant languages
in Kenya, meaning that most of all textual communication
is in these languages. Second, Gı̃kũyũ orthography con-
tains two diacritically marked characters (ı̃ and ũ) that re-
quire extra keystrokes to generate, a situation which often
makes users opt for the diacritically unmarked equivalents,
resulting in non-standard Gı̃kũyũ texts. These extra charac-
ters also pose a challenge for automated corpus collection
methods, such as those using optical character recognition
(OCR).

However, despite such an unfavorable backdrop, Gı̃kũyũ,
together with a few other Kenyan languages, are steadily
becoming commercial languages as evidenced by their in-
creased use in broadcast media, publishing and advertising.
These developments point to a need for language technol-
ogy support for such languages to boost their use, growth
and viability. The work described here makes a positive
contribution to this need, by providing a word processing
utility that will encourage and enhance creation of correctly
spelled Gı̃kũyũ texts.

1.1. Gı̃kũyũ Language Technology
There exists a number of language technology research
efforts on Gı̃kũyũ. These include a grapheme-based ap-
proach to diacritic restoration (Wagacha et al., 2006b; De
Pauw et al., 2007), morphological analysis using a maxi-
mum entropy approach (De Pauw and Wagacha, 2007) and
finite-state techniques (Chege, 2009), machine translation
(Chege, 2009) and speech synthesis (Maina, 2009).
The closest effort towards Gı̃kũyũ spell checking is a
dictionary-based system, incorporated in a Gı̃kũyũ text ed-
itor (Chege, 2007). This system works well, but for only a
limited number of words, as contained in the dictionary.
The work described herein overcomes this limitation by
using a rule-based approach for determining the correct
spelling of any Gı̃kũyũ word.

2. Gı̃kũyũ
Gı̃kũyũ is a Bantu language belonging to the Kamba-
Kikuyu subgroup of the Niger-Congo family, with over
seven million speakers living in Central Kenya. The lan-
guage has six dialects and is lexically similar to closely
related languages such as Gı̃chuka, Kı̃embu, Kı̃merũ, and
Kı̃kamba.
Gı̃kũyũ is highly inflectional and is characterized by a com-
plex word structure and phonemics. It is also highly agglu-
tinative, with words being formed from a battery of prefixes
and suffixes. Like many Bantu languages, Gı̃kũyũ has fif-
teen noun classes and two additional locative classes. It
also has a concord system formed around the noun classes.
Gı̃kũyũ is a tonal language, a feature that introduces am-
biguity at different grammatical levels, although tonality is
not represented in the standard orthography.

2.1. Noun Morphology
Gı̃kũyũ nouns can be grouped into two categories, namely,
derived and underived nouns. Underived nouns consist of
named entities, while derived nouns can be formed in one of

Proceedings of the Second Workshop on African Language Technology
- AfLaT 2010 -

31

two ways: by affixing diminutive, augmentative or collec-
tive prefixes to an underived noun, or through verbal nom-
inalization. The following examples illustrate these pro-
cesses:

nyũmba ⇒ kı̃-nyũmba (a big house)
imondo ⇒ tũ-mondo (many nice handbags)
thaaka ⇒ mũ-thaak-i (player)
hooya ⇒ i-ho-ero (Place of prayer)
getha ⇒ i-geth-a (harvesting occasion)
thooma ⇒ ga-thom-i (the small one who reads)

Membership to a noun class is determined by a concord
system with agreement enforced on other sentence com-
ponents, such as adjectives and verbs. All Gı̃kũyũ nouns,
derived or underived, can also be optionally affixed with
the locative suffix -inı̃, which changes the meaning from a
referential entity to a location, as shown in the following
examples:

metha-inı̃ (on the table)
mũtı̃- inı̃ (on the tree)

2.2. Verb Morphology
A typical Gı̃kũyũ verb consists of a combination of zero or
more dependent morphemes, a mandatory dependent mor-
pheme and a mandatory final vowel. The simplest verb con-
sists of a verb root and a final vowel. These are usually
commands or directives. Subjunctive verb formations, i.e.
commands, can optionally take a plural marker -i or –ni.
Examples include:

ma-thaak-e (so that they play)
in-a-i (sing)
nı̃-ci-mũ-hat-agı̃r-a (they usually sweep for him/her)
reh-e-ni (bring)

Gı̃kũyũ verbs can also undergo full or partial reduplication,
depending on the number of syllables in a word. Words
with two syllables or less undergo full reduplication, while
words with more than two syllables undergo partial redupli-
cation, with only the first two syllables being reduplicated.
Examples are:

negena ⇒ nega-negena (make noise a little more)
tiga ⇒ tiga-tiga (leave a little more)

Gı̃kũyũ verbs are also affected by consonantal and vowel
phonemics. Meinhof’s Law involves consonants b, c, r, t,
g, k being replaced with NC composites in verbs obeying
first person singular, noun classes 1, 8 and 9 concord sys-
tems. Dahl’s Law is a consonantal mutation that involves
the cause sound k appearing before trigger voiceless sounds
c,k,t, being replaced with its equivalent voiced sound g. Ex-
amples include:

rathima ⇒ ndathima
uma ⇒ nyumia
kũ-theka ⇒ gũtheka
kı̃-ka-thira ⇒ gı̃gathira

Vowel mutation includes vowel lengthening before pre-
nasalized stops and vowel assimilation when some vowel
combinations appear in the neighborhood of each other
(Mugane, 1997).

3. Methodology
Developing a spell checker requires a method of determin-
ing the set of valid words in a given language, against which
the words to be checked are compared. In addition, if a
word is not valid, a list of possible suggestions or alterna-
tives need to be returned, in some prioritized order. In this
work, we use the Hunspell tools (Németh, 2010), which fa-
cilitate the definition of the valid words in a language, as
well as the likely suggestions.
We relied on a Gı̃kũyũ corpus to obtain valid words, as well
as to determine the typical misspellings that could occur
in this language. The following subsections describe the
Gı̃kũyũ corpus and the pre-processing that was done prior
to building the spell checker. A description of how to cus-
tomize the Hunspell environment for Gı̃kũyũ is also given.
The latter subsections discuss the actual definition of the
spell checker, categorized into nouns and verbs.

3.1. Corpus Collection
The primary development corpus is from a collection of
a set of 19,000 words from previous works on Gı̃kũyũ at
the School of Computing and Informatics, University of
Nairobi (Wagacha et al., 2006a; Wagacha et al., 2006b; De
Pauw et al., 2007; De Pauw and Wagacha, 2007). This
corpus has a bias on religious material but also includes
poems, short stories, novels and Internet sources. The cor-
pus was pre-processed manually to eliminate non-Gı̃kũyũ
words, and to correct diacritics, where necessary. The cor-
pus was then manually annotated where words were cat-
egorized into corresponding parts of speech, in line with
Hunspell’s defined continuation classes. Perl scripts were
used for generic annotation and marking.
The test corpus was acquired from two sources: a popular
Gı̃kũyũ blog ”Maitũ nı̃ ma itũ (Our Mother is our truth)”
was chosen as it contains diacritically-marked texts on a
variety of contemporary topics and Ngũgı̃ wa Thiong’o’s
novel “Mũrogi wa Kagogo”, which is not diacritically
marked and represents how a normal user would type on
a standard keyboard.

3.2. Hunspell Language Tools
Hunspell is a set of open source tools and utilities used for
development and testing of spellcheckers and morphologi-
cal analyzers. The main goal of Hunspell and its predeces-
sors is to compress the lexicon of a language into a man-
ageable size. Hunspell is an enhancement of its predeces-
sors Ispell and MySpell, with the latter being the official
spellchecker for OpenOffice and Mozilla products.
Hunspell was built to support languages with rich morphol-
ogy, including complex prefixes and compounding. In addi-
tion, Hunspell supports circumfixation where a certain suf-
fix can only co-occur with a given prefix or set of prefixes.
Hunspell makes use of two files: the affix file which defines
the morphological rules of the language, and the dictionary
file which contains the actual word stems. Applicable affix
rules must be specified for each stem.

3.3. Defining the Gı̃kũyũ Spell checker
The spellchecker is implemented using the concept of con-
tinuation classes, where a word is represented as a compo-

32

Foc + Subj + Neg + Cond + Tense + Obj + Redup + Verb + DvbExt + Asp + FVwl

Figure 1: Verbal Affixation in Gı̃kũyũ.

sition of one or more morphemes.

3.3.1. Hunspell Language Setup for Gı̃kũyũ
To handle Gı̃kũyũ diacritics, it is important to set charac-
ter support to Unicode (UTF-8). In addition, since Gı̃kũyũ
verbs generate many affix rules, Flag is set to a number so
as to handle the numerous affix rules. The Gı̃kũyũ alpha-
bet includes the apostrophe and hyphen, as in ng’ombe and
iria-inı̃, and the orthography set is therefore extended with
these characters. This is important as it helps Hunspell de-
termine word stops. Since Gı̃kũyũ has more than one level
of prefixes and suffixes, support for complex prefixes, as
well as circumfixation, has to be enabled in Hunspell.

3.3.2. Suggestions Component
The suggestions component is used to generate probable
suggestions for a misspelled word. It is implemented in the
affix file. Hunspell uses two sections in the affix file when
generating suggestions for misspelled words. The first is
the TRY command. This lists the language’s orthography
set in order of frequency. A more frequently used character
has more weight during suggestions. The TRY command is
shown below:

TRY eiı̃anrtocduũgmhbykw’jNRTCGDMHBEAUŨYOIĨKWJ

The second command used in the suggestion component
is the REPLACE command. The command lists the most
commonly misspelled n-grams and their replacements. The
major n-grams are a result of influence from different di-
alects, foreign languages and also by differences in spoken
versus written Gı̃kũyũ. Examples of Gı̃kũyũ replace sug-
gestions include:

REP 35
REP s c
REP sh c
REP sh ch
REP c ch
REP f b
REP v b
REP l r
REP i ı̃

3.3.3. Noun Component
The noun component is implemented in two parts, namely
the underived nouns and the derived nouns, taking into ac-
count that both noun types can take the optional locative
suffix.

SFX 251 Y 1
SFX 251 –inı̃ .

Underived nouns have a continuation class leading to the
common locative class. The class consists of optional
diminutive, augmentative and collective prefixes. Class se-
lectors are influenced by prenasalization and Dahl’s Law.

PFX 201 Y 25
PFX 201 mb kab mb
PFX 201 mb tũb mb
PFX 201 ng rũg ng
PFX 201 ng’ tũg ng’
PFX 202 Y 16
PFX 202 0 tũ [abmngrw][ˆbdngj]
PFX 202 i ka i[ˆcktı̃]

Inside the Dictionary File
mbiira/201,251
icungwa/202,251

Derived nouns are formed through circumfixation. The
CIRCUMFIX and NEEDAFFIX are used to enforce cir-
cumfixation. Examples of circumfixation include:

PFX 211 Y 20
PFX 211 0 mũ/002 .
PFX 211 0 tũ/002 .
PFX 211 0 kı̃/002 [ˆckt]
PFX 211 0 gı̃/002 [ckt]
SFX 261 Y 1
SFX 261 0 i/211,002

#Inside the Dictionary File
thaaka/261
ruga/261

Example generated words are: mũrugi, kı̃rugi, karugi

3.3.4. Verb Component

The continuation classes for verbs cater for the focus
marker, concord subject, object classes, conditional, nega-
tion, tense, deverbal extensions, aspectual markers and final
vowels. Since Hunspell only supports a maximum of three
prefixes and three suffixes, it was impossible to directly im-
plement the continuation classes as described, since verbs
can have up to seven prefixes and four suffixes, as illus-
trated in Figure 1.

To handle this challenge, we combined all prefixes into one
complex prefix. While it is possible to identify other prefix
combinations that can simplify implementation, such com-
binations are subject to other problems. For instance, fol-
lowing from Dahl’s Law, it is necessary to determine where
the trigger (c, k, t) and the cause (k) appear together.

Similar problems are evident with prenasalization and
Meinhof’s Law. The singular complex prefix approach that
was adopted for this study is shown in the following snap-
shot of the verb component definition. Given that the sim-
plest verb form consists of a final vowel appended to the
verb stem, the only mandatory continuation class in the
verb component is therefore the final vowel continuation
class.

33

PFX 611 Y 27705
PFX 611 0 ndı̃ha [ˆeı̃oũ]
PFX 611 e ndı̃he e
PFX 611 ı̃ ndı̃he ı̃
PFX 611 0 matingı̃rama [ˆeı̃oũ]
PFX 611 e matingı̃rame e
PFX 611 ı̃ matingı̃rame ı̃

Negation
PFX 711 Y 1495
PFX 711 0 nda [ˆaeı̃oũ]
PFX 711 a nda a
PFX 711 u gũtigu u[ckt]
PFX 711 e hatikwe e[ˆckt]

#Aspectual/Modal Suffixes, Voiced Consonants
SFX 482 Y 3
SFX 482 a ete [ˆi]a
SFX 482 ia etie ia
SFX 482 wo etwo wo

#Deverbal Extensions, All Verbs
SFX 450 Y 30
SFX 450 a anga [ˆi]a
SFX 450 a angwo [ˆi]a

Deverbal Extensions, Verbs beginning
with Voiced Consonants
SFX 451 Y 12
SFX 451 a ı̃ka [ˆi]a
SFX 451 ia ı̃ka ia
SFX 451 a ı̃ra [ˆi]a
SFX 451 a ı̃rwo [ˆi]

Deverbal Extensions, Verbs beginning
with Voiceless Consonants
SFX 452 Y 12
SFX 452 a eka [ˆi]a
SFX 452 ia eka ia
SFX 452 a era [ˆi]a
SFX 452 a erwo [ˆi]a

In the Dictionary File
arama/611,711,612,712,613,713,614,714,450,451,480,481
etha/611,711,612,712,613,713,614,714,450,452,480,482

Verbs in the dictionary file are categorized on the basis of
applicable continuation classes. As seen in the examples
above, these categories (groupings) are also influenced by
whether the verb ends in a mid-low or mid-high voice, and
whether it can take a causative extension, among others.

4. Results and Discussion
The developed Gı̃kũyũ spellchecker and “suggester” engine
was incorporated into OpenOffice Writer1 and evaluated
using the test corpus.

1For OpenOffice 2.x and below, integrating the spell checker
requires copying files to appropriate locations and editing the dic-
tionary.lst file accordingly, while for OpenOffice 3.x, dictionaries

The results obtained are shown in Table 1 and are based on
typical evaluation measures. In this study, True Positives
(TP) represent those correctly spelled words that are recog-
nized as such by the spell checker. False Positives (FP)
represent misspelled words that are not flagged as such.
True Negatives (TN) represent misspelled words that are
flagged as such, while False Negatives (FN) represent cor-
rectly spelled Gı̃kũyũ words that are flagged as misspelled.

Results TP FP TN FN TOTAL
No. of Instances 3351 756 854 618 5579
Precision TP/(TP + FP) = 0.82
Recall TP/(TP + FN) = 0.84
Accuracy (TP + TN)/Total = 0.75

Table 1: Evaluation Results for Test Corpus

On analysing the results, it was noted that the major reason
for unrecognized Gı̃kũyũ words (False Negatives) is word
stem missing in the dictionary file, as well as proper names,
especially of people and places. Having a richer corpus
from which to draw stems in addition to the inclusion of a
named entity recognition heuristic would be one strategy to
reduce the false negatives, thereby improving spell check-
ing accuracy.
It was observed that, when spell checking diacritically
marked texts, many misspellings (True Negatives) are gen-
erated. Subsequently, these words were easy to correct us-
ing the suggestions generated. However, the suggestion
component degraded when the misspelling was a combi-
nation of a diacritic and other (one or more) characters.
An issue that is not evident in the results, but which was
a major challenge, is over-generation, where the uncon-
trolled combination of prefixes and suffixes especially on
verb morphology, generated a large number of non-Gı̃kũyũ
words due to semantic/meaning violations.

5. Conclusion
In this work, we have reviewed the development of an open-
source spellchecker for Gı̃kũyũ language using the Hun-
spell language tools. Results obtained in applying the de-
veloped spellchecker in OpenOffice Writer, have shown an
acceptable performance with an accuracy of 75%, a preci-
sion of 82% and a recall of 84%.
The developed spell checker clearly has practical value in
the spell checking of Gı̃kũyũ texts. The developed tool
can also provide utility in the collation and correction of
additional Gı̃kũyũ texts during corpus compilation. The
methodology employed in this work can be easily ported
to other Bantu languages that share a large percentage of
similarity stems, as one approach in bootstrapping the de-
velopment of spell checkers for these languages.

Availability and Acknowledgments
A beta version of the spellchecker is available from
http://extensions.services.openoffice.org/en/project/Gikuyu.
The research presented in this paper was made possible
through a generous grant by the Acacia Program in IDRC,

are added as extensions.

34

Canada, through the African Localization Network - AN-
Loc.

6. References
ANLoc. (2010). The African Network for Localization.

[Online]. Available: http://www.africanlocalisation.net
(accessed March 2010).

Chege, K. (2007). Language-Independent Spellchecker:
Gı̃kũyũ Word Processor. Nairobi, Kenya: School of
Computing and Informatics, University of Nairobi. Un-
published Paper.

Chege, K. (2009). Morphological Analysis of Gı̃kũyũ: To-
wards Machine Translation. Nairobi, Kenya: School of
Computing and Informatics, University of Nairobi. Un-
published Paper.

De Pauw, G. & Wagacha, P.W. (2007). Bootstrapping mor-
phological analysis of Gı̃kũyũ using unsupervised max-
imum entropy learning. In H. Van hamme & R. van
Son (Eds.), Proceedings of the Eighth Annual Confer-
ence of the International Speech Communication Asso-
ciation. Antwerp, Belgium.

De Pauw, G., Wagacha, P.W. & de Schryver, G-M. (2007).
Automatic diacritic restoration for resource-scarce lan-
guages. In Václav Matoušek & Pavel Mautner (Eds.),
Proceedings of Text, Speech and Dialogue, Tenth Inter-
national Conference. Heidelberg, Germany: Springer
Berlin / Heidelberg, pp. 170–179.

Maina, L.W. (2009). Text-to-Speech System for Gı̃kũyũ
with Interactive Voice Response System. Nairobi, Kenya:
School of Computing and Informatics, University of
Nairobi. Unpublished Paper.

Mugane, R. (1997). A Paradigmatic Grammar of Gı̃kũyũ.
Stanford, USA: CLSI Publications.

Németh, L. (2010). Hunspell. [Online]. Available:
http://hunspell.sourceforge.net (accessed: March 2010).

Wa Mbugwa, G. (2010). Maitu ni ma itu (Our
Mother is our truth). [Online]. Available:
http://gigikuyu.blogspot.com (accessed March 2010).

wa Thiong’o, N. (2007). Mũrogi wa Kagogo. Nairobi,
Kenya: East African Educational Publishers Ltd.

Wagacha, P.W., De Pauw, G. & Getao, K. (2006)a. Devel-
opment of a corpus for Gı̃kũyũ using machine learning
techniques. In J.C. Roux (Ed.), Proceedings of LREC
workshop - Networking the development of language re-
sources for African languages. Genoa, Italy: European
Language Resources Association, pp. 27–30.

Wagacha, P.W., De Pauw, G. & Githinji, P.W. (2006)b.
A grapheme-based approach for accent restoration in
Gı̃kũyũ. In Proceedings of the Fifth International Con-
ference on Language Resources and Evaluation. Genoa,
Italy: European Language Resources Association, pp.
1937–1940.

35

36

	Chege et al. - Developing an Open source spell checker for Gikuyu

