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Abstract

In this paper we describe the development of an improved spelling checker for Afrikaans.
We compare two currently available spelling checkers and discuss their shortcomings. The
existing applications are restricted in their suggestion capabilities, as well as their preci-
sion and recall, mainly because they cannot treat morphologically complex words correctly.
Here, we will mainly focus on improvements in precision and recall.

The general architecture of the existing spelling checker is discussed and several im-
provements are implemented. We describe an improved lookup phase and a newly added
morphological analysis phase. The morphological analysis poses some problems which are
also treated. Finally, some remaining problems are mentioned.

1 Introduction

Although Natural Language Processing and Computational Linguistics have been
of extensive research interest for many years in the USA, Europe, and other parts
of the world, these fields are by and large unexplored territory in South Africa.
Except for some sporadic research efforts by individuals, no Human Language
Technology (HLT) projects existed for many years.

Only recently an awareness of the importance of HLT for the South African
community has started to bloom on both academic and governmental level, to
such an extent that, in 2002, the minister of the Department of Arts and Culture
convened an advisory committee to steer the development of HLT in South Africa.
Since 2001, the Potchefstroom University prioritized these fields as strategically
important research topics, and established a research focus area called “Language
and Technology”.

The university invested extensively in the enhancement of personnel and other
resources to develop human language technologies for some of the South African
languages, including the establishment of the first complete graduate study pro-
gram in Computational Linguistics in South Africa, the setting up of a dedicated
language technology laboratory, and the acquisition of text and speech corpora for
Afrikaans, South African English, and Setswana.

The first major HLT project to be funded by the university was a project to
develop a spelling checker for Afrikaans, based on morphological analysis. As the
IT department at the Potchefstroom University had already developed a spelling
checker for Afrikaans (the PUK/Microsoft Spellchecker, here called PUKspell),
the development of an enhanced spelling checker was considered an “easy” project
to get hands-on experience in the fields of Natural Language Processing and Com-
putational Linguistics, and at the same time to develop reusable enabling tech-
nologies for Afrikaans. Over and above these educational and research purposes,
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the project was also deemed to be commercially viable, with the opportunity to
support further research from the earnings of the spelling checker.

In this article we report on the progress of this project. We will first discuss the
evaluation of the existing spelling checker, identifying the areas for improvement.
Then we will give an overview of the architecture of the new spelling checker,
indicating how it improves on the shortcomings of the existing spelling checker.
To conclude, we discuss some remaining problems and possible solutions.

2 Comparison between Existing Spelling Checkers

In order to improve the existing PUKspell, we need to know what should be
improved. We therefore compare two available spelling checkers for Afrikaans:
PUKspell and another commercial spelling checker which we will call Bspell1

(van Huyssteen 2002).
The evaluation of the spelling checkers is done according to a set of metrics.

The next section will describe which metrics will be used and also discuss some
of the problems that remain when evaluating spelling checkers. It concludes with
a discussion of the results of the evaluation phase.

2.1 Evaluation Metrics

The evaluation of the spelling checkers that will be performed in this article can be
divided into two parts, viz. user-friendliness (e.g. ease of installation, complete-
ness and readability of the manual, ease of use, etc.), and performance (i.e. recall,
precision, and suggestion adequacy).

An objective measurement of user-friendliness is difficult. What value should
be assigned to, for example, the ease of installation? In the evaluation performed
here, we found that both spelling checkers are comparable in user-friendliness.
Both install without any problems, they have comparable manuals, and the user-
interface is the same (it is the Microsoft Word interface). Based on this, no pref-
erence for one of the two spelling checkers could be made and no deficiency that
should be improved could be found. The remaining part of the evaluation in this
article will therefore focus on other metrics.

The metrics that are used to evaluate the performance of the spelling checkers
(i.e. recall, precision, and suggestion adequacy), describe more directly measur-
able aspects. Table 1 gives an overview of the metrics that will be used here. Some
of these terms and concepts might need some explaining

We will follow Paggio and Music (1998) in their definitions of the metrics.
Valid words are words that are part of the language, or which are sanctioned by the
language system, in contrast to invalid words, which are not part of the lexicon or
language system. When the spelling checker claims a word is invalid, it is flagging
that word, while accepting a word means treating it as valid. Accordingly, a flag is
an indication that a word has been tagged as invalid (regardless if the word really
1Due to South African law, we are not allowed to use the name of the commercial spelling checker
directly.
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Metric Method of measurement

Lexical recall # valid words accepted
# valid words

Error recall # invalid words flagged
# invalid words

Precision # correctly flagged invalid words
# words flagged

Suggestion adequacy # correct suggestions for flagged, invalid words
total # of flagged, invalid words

Table 1: Evaluation metrics.

was invalid or not). Suggestions are alternative valid words that are offered to the
user to replace a flagged word with.

The goal of a spelling checker is to flag all invalid words and to accept all valid
words. If this is the case, all invalid words are correctly flagged.

With this information, it becomes intuitively clear what the metrics actually
measure. Lexical recall indicates the percentage of valid words correctly accepted
by the spelling checker, error recall gives the percentage of invalid words correctly
flagged and precision gives the percentage of correct flags (correctly found invalid
words) over all flags by the spelling checker.

Finally, we could measure how good, once an invalid word is found, the sug-
gestions of the spelling checker are. Ideally, the spelling checker should only sug-
gest the preferred correction. However, in practice it is sometimes unclear what
the preferred correction really is. For example, what should be the correction of
the invalid word: “learnd”? It could be “learn”, “learned”, or “learns”, among pos-
sible others. Similarly, in Afrikaans: “mek” could be corrected to “melk” (milk),
“met” (with), or “nek” (neck).

To calculate the suggestion adequacy, we have actually counted scores and
divided them by the total number of flagged, invalid words. The score that we use
in our evaluation for a single suggestion can be found in table 2. The score of an
entire text is computed by adding the scores of all suggestions of correctly flagged,
invalid words. The suggestion adequacy is the percentage of score over the flagged
invalid words.

Of course, using scores instead of simple counts does not solve the problem
of knowing what the actual preferred word is, but at least it gives an indication of
how good spelling checkers are in suggesting corrections.

2.2 Problems of Evaluation

Evaluating spelling checkers is not as simple as it might seem, as several problems
can occur and different variables should be taken into account. The most important
variable seems to be the texts used to evaluate the effectiveness of the spelling
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Score Suggestion
0.0 No suggestion or bad suggestions
0.5 Good suggestion anywhere in the list of suggestions
1.0 Good suggestion within the first three suggestions

Table 2: Scoring of suggestions.

checkers.
Test texts should of course contain valid and invalid words. Counts of found

valid and invalid words are obtained by applying the spelling checkers to these
texts. These counts are then used to determine the performance effectiveness of
the spelling checkers, by using the formulas in table 1.

If the recall and precision results of the spelling checkers are to be compared,
then the spelling checkers should of course be applied to the same texts. When
comparing spelling checkers of different languages, this is not possible, and the
only solution may be to develop some measure of difficulty of a text.

The composition of the test texts is of utmost importance. First of all, it should
be known which words are valid and which are invalid (if, for example, one does
not know which words are invalid, it is impossible to figure out if a spelling checker
found all invalid words). To compose such a text, one would ideally make use of
corpus material, including both valid and invalid words. However, to evaluate spe-
cific features of a spelling checker (e.g. its capability to handle productive com-
pounding, proper names, abbreviations, or other morphologically complex words)
one could also systematically compose a text to include data for this purpose. This
information about the construction of the test texts should be taken into account
when computing the recall and precision of the spelling checkers.

In this evaluation only one small, constructed text is used, since the focus is
on finding possible improvements. The main problem with using a larger text is to
label errors in the text (i.e. annotating) before applying the spelling checkers to it.

Another evaluation problem is to investigate whether spelling checkers can
handle context-sensitive spelling checking. This can be relatively simple, for ex-
ample, by investigating whether a spelling checker can take care of multi-word
units, such as fixed expressions and idioms. It can also be more complex, by look-
ing at the effectiveness of the spelling checker to valid words in context such as:
“then” and “than” (in English), or homonyms such as “vlei” (flatter) and “vly” (lay
down) in Afrikaans.

It should be noted that the evaluation described in this article is not meant to
show how good the spelling checkers are or which one is better, but merely to
investigate which improvements are wanted.
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Measure PUKspell Bspell
Lexical Recall 95% (1196/1255) 98% (1225/1255)
Error Recall 84% (69/82) 83% (68/82)
Precision 54% (69/128) 68% (68/98)
Suggestion 60% (41.5/69) 86% (58.5/68)

Table 3: Comparison of numerical results of the spelling checkers.

2.3 Results

This section will describe some results of the two evaluated spelling checkers,
PUKspell and Bspell. The results of applying the spell checkers to the test text
described above, can be found in table 3. This table contains percentages as com-
puted by the metrics of table 1 and, additionally, the plain counts are given between
brackets.

In the current evaluation, we have applied the spelling checkers to a text con-
taining 1337 different words, of which 1255 are valid and 82 invalid. For this
evaluation task, the text has been constructed based on a small Afrikaans cor-
pus of e-mail messages, and contains simple words, morphologically complex
words, compounds, proper names, abbreviations, and foreign words that are valid
in Afrikaans. Invalid words from the corpus have also been included. Evalua-
tion of context-sensitive spelling checking is not performed, since both spelling
checkers do not show any context-sensitivity.

The results show two interesting differences between the two spelling check-
ers. PUKspell performs overall worse than Bspell on this text. Most notably, it
rejects too many valid words, hence the lower lexical recall and precision. This
can possibly be explained by the fact that the lexicon of Bspell is 31% larger than
that of PUKspell (respectively approximately 180,000 and 235,000 words). Sec-
ondly, when looking at the rejected words, we found that both spelling checkers
have difficulty handling compounds. Thirdly, PUKspell’s suggestion adequacy is
lower than that of Bspell.

When looking at the words that are rejected, we found that both spelling check-
ers have difficulty handling compounds. Since Afrikaans is an agglutinative lan-
guage, compound formation is productive.

The results indicate three means of improving the existing spelling checker:

1. Increase the number of valid words the spelling checker will accept. This
can be done by increasing the lexicon or adding morphological information.

2. Extend the spelling checker with compound analysis. Related to this im-
provement is the handling of morphologically complex (non-compound)
words.

3. Improve the suggestion module. This includes generating better sugges-
tions, but also an improved ordering of the found suggestions.
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To get a bit of an idea of how well these spelling checkers work, we mention
results of the SCARRIE project, a spelling checker for Scandinavian languages.
Paggio and Music (1998) mention a lexical recall of 96% (2734/2841), error recall
of 20% (20/99) and a precision of 16% (20/127). Aduriz, Alegria, Artola, Ezeiza,
Sarasola and Urkia (1997) mention a suggestion adequacy of 86%. These results
are of course not directly comparable against the results in table 3, because other
languages and other texts are used.

In this article, we will concentrate on the first two improvements. The improve-
ments on the suggestion module are still under development and will be touched
on briefly in section 4.3.

3 Comparing the Existing and Improved PUKspell Versions

To be able to understand how the improvements are incorporated in the existing
spelling checker, we will first give an overview of the overall architecture of the
existing spelling checker. We will then discuss the changes that are made in the
architecture to implement the improvements.

3.1 General Architecture of Existing PUKspell

The currently available version of PUKspell has an architecture, as globally de-
picted in figure 1. Microsoft Word delivers an arbitrary piece of text to be checked.
This piece of text is tokenized (a simple algorithm is used here, that segments the
text using spaces as word boundaries). Each token is then given to the lexicon
lookup module, which tries to find the token in the lexicon. This lexicon consists
of roughly 180,000 words. If it is not found, the token is forwarded to the sugges-
tion module, which searches for words in the lexicon that are relatively close to
the token. These suggestions (if found) are given to the user.

Tokens

Dictionary Lookup

Suggestion Module

Suggestions

Figure 1: Architecture of the existing version of PUKspell.

Two remarks need to be made. First, Microsoft Word fills an array with char-
acters and then calls the spelling checker. The text in the array is not always a
single word, a sentence, or entire paragraph. It can contain one or more words,
possibly including sentence boundaries, but this can be different each time the
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spelling checker is called. The success of the spelling checker therefore depends
on effective tokenization.

Second, the success of the spelling checker is directly related to the complete-
ness of the lexicon. If not enough words are contained in the lexicon, too many
valid words are flagged as invalid. This means that in theory all morphologically
complex words and compounds should be added to the lexicon.

There has been a discussion on how large a spelling lexicon should be (Vosse
1994, p. 49), with two opposing views. One view claims that the lexicon size
should be kept small. The reason for this is that increasing the lexicon size results
in more misspelled words to be accepted. This happens in particular when infre-
quent valid words that differ only in one letter with another valid word are added
to the lexicon. The other view concentrates on the opposite idea that the lexicon
should be large, because this will reduce the number of valid words that are flagged
as invalid.

3.2 Improvements

Now that the architecture of the existing spelling checker is known, we can de-
scribe the improvements that are implemented. We will follow a token, step-by-
step, going through each phase in the spelling checker. After discussing all im-
provements, we will give an overview of the improved architecture.

3.2.1 Error Detection

The improved spelling checker contains two new modules that handle error de-
tection. These modules are added to speed up the lookup process, such that the
analysis of more complex words later on in the process does not have to be ex-
tremely efficient (because not all invalid words reach that part of the process).

The first error detection module is the error lookup module. It is a lookup
module that searches a lexicon containing invalid words. Together with the invalid
words, their best suggestions (one or more) are stored. When a word is found in
this phase, the spelling checker can automatically give these suggestions to the
user. An example word in this lexicon is: “inteligent” with “intelligent” as its
suggestion.

A second way of filtering out obviously invalid words is done by using n-gram
analysis. We have extracted n-grams (3, 4, and 5-grams of graphemes) from a
corpus of plain text (of roughly 150,000 words). Tokens that contain n-grams that
were not found in the corpus are considered invalid. This flags clearly invalid
words such as “xyyz”, but it also finds words, such as “maatxkappy” (society),
where for example an x is (incorrectly) substituted for an s, because they are next
to each other on the keyboard.

3.2.2 Extended Lexicon

The evaluation of the two spelling checkers showed us that too many valid words
are not recognized. In the improved version of the spelling checker, we tackle this
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problem in two ways. In this section we describe a direct extension and in the next
section a more indirect extension of the lexicon.

The easiest way to get the spelling checker to accept more valid words is simply
to increase the size of the lexicon. In the next release of the spelling checker, the
lexicon will be 39% larger; containing some 250,000 words. The lexicon size is
then on par with that of Bspell.

However, increasing the lexicon does not entirely solve the problem. Even
though more valid words are accepted, there is a structural difficulty with the gen-
erative lexical power of agglutinative languages. The next section will discuss a
partial solution of this problem.

3.2.3 Morphological Analysis

Afrikaans has many morphological rules that can be used to create new words
(Suid-Afrikaanse Akademie vir Wetenskap en Kuns 2002). Of course, one can
add all words that can possibly be generated to the lexicon; the spelling checker
will then accept all these words, but this will increase the size of the lexicon ex-
ponentially. However, if this is done, the structural information that is inherently
incorporated in morphologically complex words (and that can be described by
simple rules) is discarded.

The approach taken in the improved spelling checker is to incorporate mor-
phological information in the form of morphological rules. This will keep the
size of the actual lexicon small, but by applying the rules, morphologically com-
plex words (that are not directly in the lexicon) are still considered valid. In other
words, adding morphological rules has two advantages. The size of the lexicon is
reduced, while on the other hand, the number of accepted words grows.

Figure 2 depicts the relationships between the size of the lexicon of the spelling
checkers and the accepted words. The middle ellipse delimits the valid words ac-
cepted by the existing spelling checker. The smallest ellipse is the size of the
original lexicon after removing all morphologically complex words. When mor-
phological rules are added to the lexicon, all words in the largest ellipse are ac-
cepted.

Morphological rules normally describe how a morphologically complex word
can be generated from a simpler word. This means that the spelling checker has to
try to recognize the morphologically complex word by applying rules to words
in the lexicon. This is of course infeasible. Instead, we chose to reverse the
rules and reduce the morphologically complex tokens into simpler words using
the rules. The heart of this phase is a Porter stemmer (Porter 1980, Kraaij and
Pohlmann 1994) for Afrikaans. This stemmer has been developed at the Potchef-
stroom University (van Huyssteen and van Zaanen 2003).

Note that usually a stemmer is used in the context of information extraction
and retrieval (IE/IR), whereas here it is used to enhance the lexicon. In the IE/IR
context, words that are in the same semantic class should reduce to the same stem.
This is not the case here, where valid words should simply remain valid (and in-
valid words must also remain invalid).
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Words in the lexicon of the existing
spelling checker.

Morphologically simple words in
the lexicon of the existing spelling
checker.

Words accepted when the lexicon
of morphologically simple words is
enhanced with morphological rules.

Figure 2: Morphological rules increase the number accepted valid words.

The main difficulty with using a stemmer is that it can easily over-generate.
For example, Combrink (1990) identifies the a- as a possible prefix in Afrikaans, in
words such as “asosiaal” (asocial) and “atonaal” (atonal). However, care should be
taken not to remove this prefix in words like “Afrikaans” and “artistiek” (artistic),
where the a- is clearly not a prefix.

The problem regarding over-generation is currently solved by using morpho-
logical rules only if they clearly do not introduce problems. This means that a
prefix such as a- is not part of the rules, but -lik (as in “aansienlik” (considerable))
is. Note that the rules should not be able to transform an invalid word to a valid
word. The other way around sometimes happens, but that does not matter. Apply-
ing the -lik rule to a valid word such as “aanblik” (sight) results in “aanb”, which
is not a valid word. At the moment, we have collected 232 morphological rules for
the purpose of reduction of morphologically complex words.

Note that in the improved spelling checker, the lexicon containing morpholog-
ically simple words is expanded with respect to the lexicon of the existing spelling
checker, which results in an even larger lexicon.

3.3 Architecture of Improved PUKspell

This section will discuss the architecture of the improved spelling checker. Fig-
ure 3 gives a graphical overview of the architecture. Each of the modules will be
described in some detail next.

Similarly, as in the existing spelling checker, the improved spelling checker
receives tokens to be validated. These tokens are send to the improved lookup
module.

The lookup module consists of several steps. First, the error detection is done.
It consists of two steps, lookup in the invalid word lexicon and n-gram analysis. If
the token is found to be invalid, it is send to the suggestion module (shown as a
dashed arrow in the figure).
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Tokens

Improved Lookup

Morphological Analysis

Suggestion Module

Suggestions

Figure 3: Architecture of the improved version of PUKspell.

The lookup module (invalid word lexicon and n-gram analysis) can only decide
that a token is invalid. If the token is not recognized in this module, it is handed to
the morphological analysis module. This module consists of several lookup steps
(similar to the lookup module of the existing spelling checker).

Using the stemmer, the morphological analysis module transforms a token
step-by-step into simpler words. Each time, the word is checked against the lexi-
con. If at one point a valid word is found, the token is considered valid.

If the token is still not found, it is given to the suggestion module. Currently,
the suggestion module is a simple extension of that of the existing spelling checker.
However, as mentioned earlier in this article, improving the suggestion module is
future work. We discuss some of the problems in section 4.3. If suggestions are
found then they are returned to the user.

4 Remaining Problems

The new version of the spelling checker for Afrikaans will have many improve-
ments over the existing version. However, some problems still remain. This sec-
tion will focus on these remaining problems. First, we will look at the evaluation,
followed by handling compounds and, finally, something will be said about the
suggestion module.

4.1 Evaluation

Even though the overall architecture of the spelling checker is described in this
article, currently, the implementation of the spelling checker is only in the de-
sign phase. The improved spelling checker will be completely re-designed and
re-implemented. Once the new implementation is finished, it will be evaluated.

The evaluation will be focusing on specific types of words, such as morpho-
logically complex words, compounds, and foreign words that are acceptable in
Afrikaans (and words that are not). This evaluation will show whether the im-
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provements described in this article really lead to a better spelling checker. This
will be described in a future publication.

4.2 Compounds

In section 3.2.3, we explained that adding morphological information to the
spelling checker increases the number of valid words that can be handled. Mor-
phological rules are implemented using a Porter stemmer. The stemmer can strip
affixes, but is unable to handle compounds.

Finding the separate elements in compounds is a difficult problem. There are
several reasons for this. For example:

� A compound can consist of several words, e.g. “strand-hand-doek-stof”
(beach towel cloth), so trying to combine only two words from a lexicon is
not enough.

� Words can have infixes, such as s in “bruilof-s-gas” (wedding guest), e in
“student-e-nommer” (student number), en in “wa-en-huis” (garage). But
also ns, ens, tes, and er are possible infixes in a compound.

� Sometimes, doubling of consonants occurs, for example in “den-n-e-boom”
(pine tree), where the “n” is doubled.

� A compound can also be constructed using morphologically complex
words, for example, “vergadering-s-prosedure” (meeting procedure) or
“verantwoordelikheid-sin” (sense of responsibility).

At the moment, we use a longest prefix and suffix string matching to find ele-
ments in a compound (van Huyssteen and van Zaanen 2003). The idea is to find
the longest valid word that is a pre- or suffix of the compound that can still be
detected. This process must sometimes be repeated when compounds consist of
more than two words. (This method can be improved when some more linguistic
knowledge is added, as described in (Vandeghinste 2002).)

The approach sketched here is simple and seems to work often. It does not
work well with morphologically complex words, since these are handled by a com-
bination of the lexicon and the stemmer. In the end, a complex interplay between
finding the word boundary and using the stemmer might solve this problem, when
taking added letters (transition elements) and the doubling of consonants into ac-
count.

A more interesting approach would be to use machine learning. Using a lexicon
of structured compounds (delimiters between the elements of compounds), it is
possible to train a classifier. New words are then handed to the classifier, which
will insert the word breaks.

There has already been some work on compound splitting (Koehn and Knight
2003), but most approaches make extensive use of structured training data. Un-
fortunately, this data is not (yet) available for Afrikaans, making these approaches
less applicable. Even though, currently, we are applying the longest prefix and
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suffix string matching to compound splitting, when we have accumulated enough
training material, we will venture into a machine learning approach.

Another problem, that is strictly related to handling compounds in a spelling
checker, is that when a compound contains an error, it might not be so easy to
find the compound boundaries. Previous work has concentrated on finding word
boundaries within valid compounds. Spelling errors in a compound can result in
incorrect word boundaries. Once incorrect word boundaries are found, it might
prove difficult in the end to correct the error in the compound.

4.3 Suggestions

Generating suggestions for invalid words already has quite a long history (Wagner
and Fischer 1974, Lu and Fu 1977, Kernighan, Church and Gale 1990). This
research focuses on finding the most similar words with respect to the invalid word.
The underlying idea is that the invalid word resulted from an edit operation (for
example, insertion, deletion, substitution, or transposition) and thus applying the
reverse of these operations to the invalid word should result, among others, in the
meant valid word.

This approach can still be taken in the improved spelling checker. However, the
morphological rules that have been added to the spelling checker introduce prob-
lems. Whereas the standard techniques search the lexicon, the improved spelling
checker accepts words that can be in the lexicon or that can be analyzed by apply-
ing morphological rules on the words in the lexicon.

The idea to solve this problem is to try and stem the word using the morpho-
logical rules and then reverse this process to reach possible suggestions. However,
this is by no means an easy problem. It is already known that the word is invalid
(otherwise it would never reach the suggestion module). This means it is possible
that an error occurred in one of the affixes the stemmer is trying to remove. For
example, assume that the word “snelheid” (speed), with suffix -heid is misspelled
as “snelhed” (deletion of the “i”). In this case, the suffix cannot be removed and
the rest of the word cannot be found.

The suggestion module should take into account that spelling errors can occur
in the affixes used by the lexicon. This increases the complexity of the algorithm.

To make things worse, this problem becomes even more difficult when com-
pounds are handled. Firstly, finding word boundaries of the compound may prove
difficult, as discussed in the previous section. Secondly, correcting invalid com-
pounds, even when the correct word boundaries are known, is hard. The algorithm
must correct multiple words instead of a single word. Thirdly, there are no clear
or easily implementable rules on when to insert combining letters (-s-, -en-, etc.).

5 Conclusion

This article describes the development of an improved spelling checker for
Afrikaans. Based on the evaluation of an existing spelling checker, various im-
provements are suggested. The main outcome of the comparison showed that pre-
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cision and recall should be improved, as well as the suggestion module.
By adding morphological information, we try to enhance the generative power

of the lexicon and subsequently recognize more words. To reduce the number of
accepted invalid words, n-gram analysis and an error lexicon is added. This will
ultimately lead to an increase in precision and recall.

Some problems remain, such as a good compound analysis phase and an im-
proved suggestion module. Finally, once the improved spelling checker is imple-
mented, it should be thoroughly evaluated.

On a more general note, we need to mention that the research is performed at
the Potchefstroom University in South Africa and has three main goals. Firstly,
the research performed on the spelling checker is used as a basis of a course in
computational linguistics. It is used to illustrate several techniques and allows stu-
dents to get a feeling of problems and their solutions in the field of computational
linguistics. Secondly, since the field of computational linguistics is still develop-
ing, hardly any resources exist. This project results in a spelling checker, but also a
stemmer and a lexicon. Thirdly, it tries to implement an improved spelling checker
that can be commercially exploited.
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