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Abstract. The orthography of many resource-scarce languages includes diacrit-
ically marked characters. Falling outside the scope of the standard Latin encod-
ing, these characters are often represented in digital language resources as their
unmarked equivalents. This renders corpus compilation more difficult, as these
languages typically do not have the benefit of large electronic dictionaries to
perform diacritic restoration. This paper describes experiments with a machine
learning approach that is able to automatically restore diacritics on the basis of
local graphemic context. We apply the method to the African languages of Cilubà,
Gı̃kũyũ, Kı̃kamba, Maa, Sesotho sa Leboa, Tshivenda and Yoruba and contrast
it with experiments on Czech, Dutch, French, German and Romanian, as well as
Vietnamese and Chinese Pinyin.

1 Introduction

Language corpus compilation for resource-scarce languages is often done by web crawl-
ing the (limited) available content on the Internet [1] or by scanning and “OCRing” hard
copy resources [2]. This poses a problem for languages that have diacritically marked
characters in their orthography. Despite an increasing awareness of encoding issues,
OCR research on orthographically rich languages [3], and the development of special-
ized computer keyboards [4], many of the digital and digitized language resources use
the standard Latin alphabet, with accented characters represented by their unmarked
equivalents. While language users can perform real-time disambiguation of unmarked
text while reading, a lot of phonological, morphological and lexical information is lost
this way, that could be useful in the context of language technology.

Typical diacritic restoration methods employ large lexicons to translate words with-
out diacritics into the properly annotated format. This type of information source is
however not digitally available for most resource-scarce languages, many of which
make extensive use of diacritically marked characters. In this paper we describe experi-
ments with a machine learning approach that tries to predict the placement of diacritics
on the basis of local graphemic context, thereby circumventing the need for a digital
dictionary.
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The focus in this paper will be on seven African languages: Cilubà (Congo, Central
Africa), Gı̃kũyũ, Kı̃kamba and Maa (Kenya, Eastern Africa), Sesotho sa Leboa and
Tshivenda (South Africa) and Yoruba (Nigeria, Western Africa). We contrast the results
with those obtained on better resourced languages: Czech, Dutch, French, German,
Romanian and Vietnamese. To isolate its performance on predicting tonal diacritics, we
also investigate the technique on Chinese Pinyin data.

We first look at previous work on diacritic restoration in Section 2, highlighting the
grapheme-based approach to diacritic restoration. Section 3 discusses the languages and
data sets used in the experiments. We then outline the experimental results in Section 4
and conclude with some pointers to future work in Section 5.

2 Grapheme-Based Diacritic Restoration

Most of the automatic diacritic restoration methods [5,6,7] tackle both the actual task
of retrieving diacritics of unmarked text and the related tasks of part-of-speech tag-
ging and word-sense disambiguation. Although complete diacritic restoration ideally
involves a large amount of syntactic and semantic disambiguation, this type of analysis
can typically not be done for resource-scarce languages. Moreover, these methods rely
heavily on lookup procedures in large lexicons, which are usually not available for such
languages.

Mihalcea (2002) describes an alternative diacritics restoration method that uses a ma-
chine learning technique operating on the level of the grapheme [8,9]. By backing off
the problem from the word level to the grapheme level, it opens up the possibility of
diacritic restoration for languages that have no electronic word lists available. Applied
to Romanian, Czech, Hungarian and Polish, the technique achieves very high accuracy
scores of up to 99% on the grapheme level [9]. Similar work on Gı̃kũyũ [10] has like-
wise yielded encouraging results.

The general idea of the approach coined in [8,9,10] is that local graphemic context
encodes enough information to solve this disambiguation problem. It projects diacritic
restoration as a standard classification problem, that can be solved by a machine learn-
ing algorithm.

Left Left Left Left Left Focus Right Right Right Right Right Class

- - - - - m b u r i - m
- - - - m b u r i - - b
- - - m b u r i - - - ũ
- - m b u r i - - - - r
- m b u r i - - - - - i

Fig. 1. Training Instances for the Gı̃kũyũ word “mbũri” (goat)

To this end, training instances in the form of fixed feature vectors are extracted for the
graphemes of the words in the corpus. We illustrate this in Figure 1, using an example
from one of the target languages under investigation in this paper, i.e. the Gı̃kũyũ word
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“mbũri” (goat). Using a sliding window, the instance describes eleven features for each
grapheme: an ambiguous focus letter, e.g. the Latin character “u”, the left context of
the focus grapheme and its right context. These features are associated with a class, in
this case the diacritically marked character “ũ”. The instances can then be used to train
a machine learning algorithm which can consequently classify new instances.

Touted as language independent, the scalability of this technique to small data sets
and its applicability to non Indo-European data sets, has so far not extensively been
investigated. Furthermore, the experimental results presented in [8,9] do not provide an
appropriate task-oriented evaluation of the approach. In this paper, we wish to address
these issues by adjusting the experimental setup of the technique and re-evaluating it on
a more varied array of languages and data sets.

3 The Data Sets

In this section we will outline the available data sets for the languages under investi-
gation. While a detailed overview of the orthography of all these languages would fall
beyond the scope of this paper, we will attempt to quantify the disambiguation chal-
lenges that our diacritic restoration method faces on the respective languages.

Table 1 provides some quantitative information for the data sets. For Dutch, German
and Maa we used the readily available word lists. For each of the other languages, we
extracted a word list of unique word forms (column Types) from a language corpus,
consistently discarding English word forms often found in web crawled corpora. Table
1 further describes the number of non-Latin characters (column n) found in the word
list and the percentage of words with at least one diacritic (column T(d)).

The most informative quantification of the diacritic disambiguation problem is the
“lexical diffusion” metric (LexDif). To arrive at this value, we first convert all types to
latinized word forms, whereby sometimes multiple types converge to the same Latin
form. The LexDif value is then calculated by dividing the number of types by the num-
ber of latinized word forms. It thus expresses the average number of orthographic alter-
natives per Latin form. Since our grapheme-based technique can only predict one single
possible alternative for a given latinized word form, this column describes the degree of
resolvability of our approach: the higher the lexical diffusion value, the more inherently
unsolvable the diacritic restoration problem.

Cilubà. The manually compiled corpus [11] for this Congolese Bantu language in-
cludes almost twenty non-Latin characters. Tonal marking in the orthography causes
high values for the T(d) and LexDif metrics, indicating a significant disambiguation
challenge.

Gı̃kũyũ and Kı̃kamba. These closely related Kenyan Bantu languages have manually
compiled corpora available to them [2]. Both have two frequently used diacritically
marked characters. The languages are tonal, but tone is not marked in the orthogra-
phy. Previous diacritic restoration work on Gı̃kũyũ [10] showed the grapheme-based
approach to be effective for this language, despite the extensive use of diacritics in the
orthography.
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Table 1. Information on data sets used in the experiments: number of tokens and types in the
corpus; number of diacritically marked characters (n); percentage of types with one or more
diacritics (T(d)); average number of possible orthographic instantiations of the same Latin form
(LexDif)

Language Tokens Types n T(d) LexDif

Cilubà 144.7k 20.0k 17 71.8 1.17
Gı̃kũyũ 14.8k 9.1k 2 64.9 1.03
Kı̃kamba 38.3k 9.7k 2 65.7 1.07
Maa 22.2k 22.2k 11 46.9 1.05
Sesotho sa Leboa 6.9M 157.8k 1 23.3 1.04
Tshivenda 249.0k 9.6k 5 18.2 1.03
Yoruba 65.6k 4.2k 21 61.3 1.26

Czech 123.9k 105.8k 15 66.3 1.05
Romanian 3.3M 146.9k 5 39.9 1.05
French 23.2M 258.6k 19 21.0 1.04
Dutch 301.9k 301.9k 18 1.5 1.00
German 365.6k 365.6k 4 23.9 1.03

Vietnamese 2.6M 50.9k 26 61.3 1.21
Chinese Pinyin 73.5k 12.0k 25 97.1 1.12

Maa. For this Kenyan Nilotic language, spoken by the Maasai, we used the online
Maa dictionary1 as our data set. We restricted the disambiguation problem to eleven
characters (representing phonemes) and discarded tonal markings. The complete tonally
marked orthography includes more than 40 characters and can not be handled with
a data set of this size.

Sesotho sa Leboa. As one of the eleven official languages of South Africa, this Bantu
language has a considerable corpus [12]. With only one diacritically marked character
and no tonal markings, the LexDif column nevertheless indicates a surprisingly hard
disambiguation problem.

Tshivenda. As one of the smaller official Bantu languages of South Africa, a more
modest corpus was manually assembled for the purposes of this paper. The orthography
contains quite a few non-Latin characters, but has no tonal marking.

Yoruba. The LexDif value for this Nigerian Defoid language indicates a similar chal-
lenge as for Cilubà, also counting a considerable number of special characters and tonal
markings. The corpus material was compiled from sources supplied by Paa Kwesi Im-
beah (kasahorow.org) and Kevin Scannell (web crawler “An Crúbádán”).

Indo-European languages. For the experiments on Czech we used a word list extracted
from the DESAM corpus [13]. The Romanian data set is the same used for the experi-
ments in [9]. The word list for French was extracted from a corpus of French newspaper
text (Le Monde). For Dutch and German, we used the readily available lexical databases
of CELEX [14].

1 http://darkwing.uoregon.edu/˜dlpayne/Maa%20Lexicon/lexicon/main.htm
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Vietnamese. The data set for this Mon-Khmer language was compiled by Le An Ha
[15]. The orthography employed in this corpus makes heavy use of diacritics, mark-
ing both phonemic variants and tonal characteristics. The high LexDif value and the
large number of diacritically marked characters predict a complicated disambiguation
problem, similar to Yoruba.

Chinese Pinyin. This data set2 contains a latinized version of the Mandarin Chinese
orthography. The diacritics only mark tone, no phonemic variations. Experiments on
this data set will allow us to isolate the performance of the technique on predicting
tonal diacritics.

4 Experiments

4.1 Experimental Setup

Given that the grapheme-based diacritic restoration approach can principally predict
only one single alternative, it simulates a (unigram) lexicon lookup approach. In a prac-
tical context, one would therefore be expected to combine the lexicon lookup approach
for known words and use the grapheme-based approach for out-of-vocabulary words.
This consequently means it should be evaluated primarily on the basis of its perfor-
mance on unknown words.

In the experiments described in [8,9], instances for graphemes are extracted from
a corpus of plain text. The individual instances are then divided into a training set
and test set. Making this division on the grapheme level, rather than the word level,
means that there will be a significant amount of instances in the test set that have an
exact match in the training set. While the experimental results reported in [8,9] are
solid, we believe that this methodology does not constitute an appropriate evaluation of
the diacritic restoration problem, since the performance on unknown words cannot be
established in this manner.

We therefore opt for a significantly different experimental setup, that will allow for
a more task-oriented evaluation. Rather than first processing the corpus and dividing
the individual instances into a training and test set, we randomly divide the lexicon of
unique word forms into ten parts. For each experiment during the 10-fold cross valida-
tion, we extract instances from nine partitions, used to train the machine learning algo-
rithm, and evaluate it on the instances extracted from the test set, consisting of unknown
words (Section 4.3). In a final experiment (Section 4.4) we also measure performance
on plain text data.

4.2 Memory-Based Learning

The instances extracted from the training set are used to train a TiMBL classifier [16],
an implementation of the machine learning technique of memory-based learning. The
scope of the experiments prevented a thorough exploration of parameter and feature
settings. The experimental results were obtained by using the standard settings, except
for an increased k-value of 3.

2 Compiled from http://www.inference.phy.cam.ac.uk/dasher
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Interestingly, while other machine learning algorithms like maximum entropy
learning and support vector machines are typically able to outperform memory-based
learning on many NLP tasks, these algorithms were not able to improve on TiMBL’s
performance for these experiments, often significantly underperforming. Furthermore,
previous experiments using trigram-based processing [10] showed a significant accu-
racy increase for this task on the Gı̃kũyũ data set. After rigid pre-processing of the
lexicons, the trigram approach, typically providing more noise-robust output, was no
longer observed to yield significant increases in accuracy.

4.3 Experimental Results: Unknown Words

Following up on the new experimental setup described in Section 4.1, we also provide a
different, more task-oriented evaluation. Whereas [8,9] provide accuracy scores on the
grapheme level, we opt to primarily evaluate the technique on the word level, i.e. the
percentage of words in the test that have been predicted completely correctly. Table 2
nevertheless also provides the average accuracy with which latinized graphemes have
been disambiguated.

The baseline model identifies candidate graphemes for diacritic marking and chooses
the most frequent solution observed in the training set. For French and Dutch for in-
stance these invariably equal to the unmarked characters. This trivial baseline already
achieves a very high accuracy for Dutch and Tshivenda (Table 2) because of the limited
use of diacritics in these languages. While the disambiguation problem in Sesotho sa
Leboa seems limited with only one diacritically marked character, the baseline results
confirm the difficulty of the problem.

Table 2. Word level and grapheme level accuracy scores on unknown words (Ci: Cilubà, Gı̃:
Gı̃kũyũ, Kı̃: Kı̃kamba, Ma: Maa, Se: Sesotho sa Leboa, Ts: Tshivenda, Yo: Yoruba, Cz: Czech,
Ro: Romanian, Fr: French, Du: Dutch, Ge: German, Vi: Vietnamese, Ch: Chinese Pinyin)

Word Ci Gı̃ Kı̃ Ma Se Ts Yo Cz Ro Fr Du Ge Vi Ch

Baseline 28.2 48.7 58.4 53.1 76.2 81.8 35.4 33.7 60.6 75.2 98.5 78.3 29.4 6.7
MBL 36.6 74.9 73.5 58.6 90.1 89.3 40.6 74.4 83.2 88.2 99.6 92.7 63.1 31.5

Grapheme Ci Gı̃ Kı̃ Ma Se Ts Yo Cz Ro Fr Du Ge Vi Ch

Baseline 69.8 58.9 66.7 76.8 50.6 87.2 54.0 83.2 92.5 93.8 99.7 83.1 65.8 40.4
MBL 77.4 83.1 80.4 85.4 80.9 92.9 68.2 95.2 97.3 97.2 99.9 94.3 82.7 69.0

The grapheme-based memory-based learning approach (MBL in Table 2) is able to
improve both word level and grapheme level accuracy scores for all data sets, with a par-
ticularly encouraging increase in accuracy for Gı̃kũyũ, Kı̃kamba, Sesotho sa Leboa,
Czech, Romanian and Vietnamese. Note how for Czech and Romanian a modest in-
crease of accuracy on the grapheme level has a major impact on the accuracy on the
word level. Interestingly, the grapheme accuracy scores for Czech and Romanian are
well below those reported in [8,9]. Since we use the same machine learning algorithm
and same data, we hypothesize that the difference is due to evaluating the task on
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unseen words, rather than evaluating it on graphemes, extracted from a combination
of known and unknown words.

While the results for Cilubà and Yoruba have improved significantly, the diacritic
restoration problem is still far from solved for these languages. The trailing results
compared to the other African languages, are caused by the tonal markings present in
these languages. Tonal diacritics can simply not be solved on the level of the grapheme.
Particularly the problem of floating tones needs to be resolved on the sentence level.
The increase in accuracy reported on these languages is mainly due to the restoration of
diacritics that indicate phonemic alternatives.

This hypothesis is further corroborated by the results on Chinese Pinyin. Diacritics
in this data set solely mark tone. While there is a significant increase using the machine
learning approach, the results are still severely lacking. Note that the LexDif metric
(Table 1) was able to predict the trailing results for Cilubà, Yoruba and Chinese Pinyin.

A special case is the language pair Gı̃kũyũ and Kı̃kamba. Closely related with a very
similar orthography, we conducted some combination experiments. In the first exper-
iment, we isolated a Kı̃kamba test set and added the Gı̃kũyũ data set to the Kı̃kamba
training set. Word-level accuracy decreased 5.4% compared to a plain Kı̃kamba training
set (67.1% vs 72.5%). A reverse experiment with a Gı̃kũyũ test set yielded a decrease of
6.1% (67.4% vs 73.5%). In a second set of experiments, we solely used Gı̃kũyũ training
data to classify the Kı̃kamba test set and vice versa. Word-level accuracy on the Gı̃kũyũ
test set was 55.8%, and 52.3% on the Kı̃kamba test set. Since these results indicate the
orthography of the languages is to some extent similar, re-using the data may bootstrap
a basic diacritic restoration method for other closely related languages such as Kı̃embu
or Kı̃merũ.

4.4 Experimental Results: Plain Text

For the languages for which we had a plain text corpus available (all except Maa),
we conducted some experiments measuring the effectiveness of our technique on a text
containing both known and unknown words. Table 3 displays the results for these exper-
iments. The baseline model for this experiment implements the lexicon lookup method
(LLU). In this approach, the training set lexicon is used to translate the unmarked words
in the test set into the associated diacritically marked words using a unigram model.
Particularly for languages with a large training lexicon, this is the baseline to beat. The
second method is the grapheme-based memory-based learning approach (MBL). The
third method combines the two, using lexicon lookup for known words, and MBL for
unknown words (LLU+MBL).

The results show that for Dutch and German, the lexicon lookup model scores quite
well. For the former, this is almost a solved problem. Not surprisingly, the smaller
lexicon for French yields a more modest score for the plain text test set. Using the MBL
method, there is only a small decrease for French, Dutch and German compared to the
lexicon lookup approach. These results are encouraging, since they give an indication of
the relative accuracy of the grapheme-based approach, compared to the standard lexicon
lookup approach.

For languages with a larger corpus, like Sesotho sa Leboa, Czech and Romanian, the
combined approach outperforms all other alternatives, but rather surprisingly, despite
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Table 3. Word level accuracy scores on plain text

Word Ci Gı̃ Kı̃ Se Ts Yo Cz Ro Fr Du Ge Vi Ch

LLU 77.0 77.3 79.4 97.6 97.7 67.8 61.8 94.0 89.1 99.9 96.2 74.5 78.5
MBL 85.3 92.4 91.6 99.2 99.4 76.8 89.2 96.5 88.3 99.8 95.3 73.5 83.9
LLU+MBL 79.6 91.5 90.4 99.4 99.2 68.5 90.1 96.6 89.3 99.9 96.8 75.5 80.3

the considerable size of the training lexicon, MBL still significantly outperforms the
lexicon lookup method.

As expected, the score for the lexicon lookup approach is quite low for the resource-
scarce languages of Cilubà, Gı̃kũyũ, Kı̃kamba, Tshivenda and Yoruba. For each of
these, the grapheme-based approach also outperforms the combined approach by a sig-
nificant margin. This means that a typical training set for these resource-scarce lan-
guages does not yet contain enough lexical information to enable accurate lexicon
lookup approaches. This projects the grapheme-based approach as the more robust dia-
critic restoration method for resource-scarce languages.

Also note that the word level accuracy scores on plain text are a lot higher than
those for unknown words. This is particularly true for the Chinese Pinyin data set. We
hypothesize that the artificially inflated scores are the effect of using small domain-
specific corpora, with typically a restricted lexicon. This provides further support to the
claim that the diacritic restoration task is preferably to be evaluated on unknown words,
to truly measure its effectiveness in a practical context.

5 Conclusion and Future Work

In this paper we have presented experiments with a grapheme-based machine learn-
ing approach for diacritic restoration. We described a new experimental approach to
this task, that enables a more task-oriented evaluation of this particular disambiguation
problem. The difference in results between disambiguating unknown words and known
words provides some indication that previously reported results were overstated. We
also introduced the metric “lexical diffusion” that is able to predict the difficulty of the
diacritic restoration problem for a given language.

Focusing on resource-scarce African languages, we showed that the machine learn-
ing approach is indeed to a great extent language independent. But while the method is
able to predict diacritics for phonemic variants of the same Latin character with a high
degree of accuracy, there are considerable issues when dealing with languages that mark
tonality in the orthography. Future research will extend the technique to predict multiple
variants of the same latinized word form, combined with contextual sentence models to
trigger the correct tonal pattern of a word.

Since for most African languages there is an almost one-to-one mapping between
phoneme and grapheme, an effective diacritic restoration method for African languages
is almost tantamount to grapheme-to-phoneme conversion. Particularly given the more
than encouraging results on processing plain text, the machine learning approach pre-
sented in this paper warrants further investigation on a larger array of African languages.
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In the meantime, we are confident that the proposed diacritic restoration method can sig-
nificantly speed up corpus development for the resource-scarce languages under inves-
tigation in this paper, as it provides an effective tool to process and enhance unmarked
digital language resources.
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