SIES Methods for Amharic Part of Speech Tagging Björn Gambäck, Fredrik Olsson, Atelach Alemu Argaw, Lars Asker ## **Amharic** - is used for country-wide communication in Ethiopia. - is spoken by about 30 million people as a first or second language. - is a Semitic language written from left to right. - uses a unique script (fidel) which has has 33 basic forms and 33 * 7 syllographs - has a rich verbal morphology based on triconsonantal roots. - Subject, gender, number, etc., are indicated as bound morphemes. - nouns (and adjectives) can be inflected for gender, number, definiteness, etc ### E.g. sbr : verb forms | | form | pattern | |------------|--------------------|-----------| | Root | sbr | CCC | | perfect | säbbär | CVCCVC | | Imperfect | säbr | CVCC | | gerund | säbr | CVCC | | imperative | sbär | CCVC | | causative | assäbbär a | as-CVCCVC | | passive | <i>täsäbbär</i> tä | is-CVCCVC | # **Open Source** Taggers - TnT - Hidden Markov Model - · Viterbi algorithm - Maximize $P(word_n|tag_n)*P(tag_n|tag_{1...n-1})$ - SVMTool - Support Vector Machines - High dimensional vectors - Hyperplane separation algorithm - MALLET - · Maximum Entropy - Linear classifier - Log likelihood maximization #### Reported performance of the taggers (Wall Street Journal) | Tagger | Performance | | | | |---------|-------------|--------|---------|--| | | Overall | Known | Unknown | | | TnT | 96.7% | 97.0% | 85.5% | | | SVMTool | 96.9 % | 97.2 % | 83.5 % | | | Mallet | 96.6 % | NA | NA | | # **Experiments and Results** # Corpus #### **Data Set** 210k words 1065 Amharic news articles #### **Tag Set** 30 tags – Full tagset by the Ethiopian Languages Research Center (ELRC) [Demeke and Getachew, 2006] 11 tags – Basic tagset by ELRC 10 tags - Alternative tagset by Sisay [Fissaha, 2005] #### **Tagged Corpus** - Cleaned - 200,863 words #### 10 Fold average statistics | Words | Known | Unknowr | |--------|--------|---------| | 20,086 | 17,727 | 2,359 | | | 88.26% | 11.74% | ## Results | TnT
STD DEV
KNOWN
UNKNOWN | ELRC
85.56
0.42
90.00
52.13 | BASIC 92.55 0.31 93.95 82.06 | 92.60
0.32
93.99
82.20 | | |---|---|---|---|--| | SVMTool
STD DEV
KNOWN
UNKNOWN
Own folds | 88.30
0.41
89.58
78.68
88.69 | 92.77 0.31 93.37 88.23 92.97 | 92.80 0.37 93.34 88.74 92.99 | | | STD DEV MaxEnt | 0.33 | 0.17
92.56 | 0.26 | | | STD DEV KNOWN UNKNOWN Own folds STD DEV BASELINE | 0.49
89.44
76.05
90.83
1.37
35.50 | 0.38
93.26
87.29
94.64
1.11
58.26 | 0.43
93.27
87.61
94.52
0.69
59.61 | | #### Discussion - TnT Best performance for Known words - SVMTool Best performance for unknown words and overall - MaxEnt Best performance when it uses own folds ## **Future Work** - Morphological analysis - Combining Taggers - Use external knowledge sources (e.g. machine readable dictionaries) - · Semi supervised / unsupervised learning